Main Article Content
Abstract
Purpose: This study aims to fill this gap by evaluating the benefits and challenges of applying CVT to a prototype monitoring camera, as well as developing an optimal implementation strategy.
Research Design and Methodology: Through a mixed-methods approach and black-box testing, the results show that the application of CVT has great potential to revolutionize industrial IMS, particularly in aspects such as real-time monitoring, visual data analysis, and decision-making.
Findings and Discussion: The preliminary results suggest that this technology can improve operational efficiency, accuracy, and safety, thereby enhancing productivity and cost efficiency.
Implications: This research explores the potential contribution of CVT to IMS in the industrial sector, focusing on the use of a prototype Radio Frequency Identification (RFID)-based monitoring camera, and examines its long-term implications.
Keywords
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
- Alam, M. F., Katsikas, S., Beltramello, O., & Hadjiefthymiades, S. (2017). Augmented and virtual reality-based monitoring and safety system: A prototype IoT platform. Journal of Network and Computer Applications, 89, 109–119. https://doi.org/10.1016/j.jnca.2017.03.022
- Almeida, F. (n.d.). European Journal of Education: Strategies for Conducting a Mixed Methods Study. https://doi.org/10.5281/zenodo.1406214
- Astuti, E. R. (2022). Improvement Quality of Software Requirements Using Requirement Negotiation System for Supporting Decision (Vol. 10, Issue 1).
- Barlow, S. E., O’Neill, M. A., & Pavlik, B. M. (2019). A prototype RFID tag for detecting bumblebee visitations within fragmented landscapes. Journal of Biological Engineering, 13(1). https://doi.org/10.1186/s13036-019-0143-x
- Bit, J., Tarigan, M., Kom, M., & Handayani, D. (2019). Prototype Pengembangan Sistem Pencatatan Stok Barang Dengan Teknologi RFID (Vol. 16, Issue 2). https://journal.budiluhur.ac.id/index.php/bit
- Chan, C. C., Abu Bakar, N. H., Raju, C. M., & Urban, P. L. (2024). Computer Vision-Assisted Robotized Sampling of Volatile Organic Compounds. Analytical Chemistry, 96(41), 16307–16314. https://doi.org/10.1021/acs.analchem.4c03361
- Cui, L., Zhang, Z., Gao, N., Meng, Z., & Li, Z. (2019). Radio frequency identification and sensing techniques and their applications—A review of the state-of-the-art. In Sensors (Switzerland) (Vol. 19, Issue 18). MDPI AG. https://doi.org/10.3390/s19184012
- Ekanayake, B., Wong, J. K. W., Fini, A. A. F., & Smith, P. (2021). Computer vision-based interior construction progress monitoring: A literature review and future research directions. In Automation in Construction (Vol. 127). Elsevier B.V. https://doi.org/10.1016/j.autcon.2021.103705
- Ekanem, I. I., Ohwoekevwo, J. U., & Ikpe, A. E. (2024). Conjectures of computer vision technology (CVT) on industrial information management systems (IMSs): a futuristic gaze. In Metaheuristic algorithms with applications (Vol. 1, Issue 1). http://creativecommons.org/licenses/by/4.0
- Gortschacher, L. J., & Grosinger, J. (2019). UHF RFID Sensor System Using Tag Signal Patterns: A Prototype System. IEEE Antennas and Wireless Propagation Letters, 18(10), 2209–2213. https://doi.org/10.1109/LAWP.2019.2940336
- Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., & Pedreschi, D. (2019). A survey of methods for explaining black box models. ACM Computing Surveys, 51(5). https://doi.org/10.1145/3236009
- Ismail, H., & Hanafiah, M. M. (2021). Evaluation of e-waste management systems in Malaysia using life cycle assessment and material flow analysis. Journal of Cleaner Production, 308. https://doi.org/10.1016/j.jclepro.2021.127358
- Kumar, M., Professor, A., Kumar Singh, S., Dwivedi, R. K., & Professor, A. (2015). International Journal of Advance Research in Computer Science and Management Studies. International Journal of Advance Research in Computer Science and Management Studies, 3(10). www.ijarcsms.com
- Loyola-Gonzalez, O. (2019). Black-box vs. White-Box: Understanding their advantages and weaknesses from a practical point of view. In IEEE Access (Vol. 7, pp. 154096–154113). Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/ACCESS.2019.2949286
- Markic, D. N., Carapina, H. S., Bjelic, D., Bjelic, L. S., Ilic, P., Pesic, Z. S., & Kikanovicz, O. (2019). Using material flow analysis for waste management planning. Polish Journal of Environmental Studies, 28(1), 255–265. https://doi.org/10.15244/pjoes/78621
- Nidhra, S. (2012). Black Box and White Box Testing Techniques - A Literature Review. International Journal of Embedded Systems and Applications, 2(2), 29–50. https://doi.org/10.5121/ijesa.2012.2204
- Oktaviani, L., Fernando, Y., Romadhoni, R., & Noviana, N. (2021). Developing a web-based application for school councelling and guidance during COVID-19 Pandemic. Journal of Community Service and Empowerment, 2(3), 110–117. https://doi.org/10.22219/jcse.v2i3.17630
- Pirdaus, D. I., & Hidayana, R. A. (2024). Analysis Testing Black Box and White Box on Application To-Do List Based Web. International Journal of Mathematics, Statistics, and Computing, 2(2), 68–75.
- Schandl, H., Fischer-Kowalski, M., West, J., Giljum, S., Dittrich, M., Eisenmenger, N., Geschke, A., Lieber, M., Wieland, H., Schaffartzik, A., Krausmann, F., Gierlinger, S., Hosking, K., Lenzen, M., Tanikawa, H., Miatto, A., & Fishman, T. (2018). Global material flows and resource productivity forty years of evidence. Journal of Industrial Ecology, 22(4), 827–838. https://doi.org/10.1111/jiec.12626
- Selvaraj, A. S., & Anusha, S. (2021). RFID enabled smart data analysis in a smart warehouse monitoring system using iot. Journal of Physics: Conference Series, 1717(1). https://doi.org/10.1088/1742-6596/1717/1/012022
- Sjödin, D. R., Parida, V., Leksell, M., & Petrovic, A. (2018). Smart Factory Implementation and Process Innovation: A Preliminary Maturity Model for Leveraging Digitalization in ManufacturingMoving to smart factories presents specific challenges that can be addressed through a structured approach focused on people, processes, and technologies. Research Technology Management, 61(5), 22–31. https://doi.org/10.1080/08956308.2018.1471277
- Taherdoost, H. (2022). What are Different Research Approaches? Comprehensive Review of Qualitative, Quantitative, and Mixed Method Research, Their Applications, Types, and Limitations. Journal of Management Science & Engineering Research, 2022(1), 53–63. https://doi.org/10.30564/jmser.v5i1.4538ï
- Tian, H., Wang, T., Liu, Y., Qiao, X., & Li, Y. (2020). Computer vision technology in agricultural automation —A review. In Information Processing in Agriculture (Vol. 7, Issue 1, pp. 1–19). China Agricultural University. https://doi.org/10.1016/j.inpa.2019.09.006
- Triki-Lahiani, A., Bennani-Ben Abdelghani, A., & Slama-Belkhodja, I. (2018). Fault detection and monitoring systems for photovoltaic installations: A review. In Renewable and Sustainable Energy Reviews (Vol. 82, pp. 2680–2692). Elsevier Ltd. https://doi.org/10.1016/j.rser.2017.09.101
- Ullo, S. L., & Sinha, G. R. (2020). Advances in smart environment monitoring systems using iot and sensors. In Sensors (Switzerland) (Vol. 20, Issue 11). MDPI AG. https://doi.org/10.3390/s20113113
- Veena, S., Vinoth, N. A. S., Nancy, A. M., Kumar, G. S., & Teja, R. T. (2020). Effective system for software requirement management. AIP Conference Proceedings, 2277. https://doi.org/10.1063/5.0025463
- Verma, A., Khatana, A., & Chaudhary, S. (2017). A Comparative Study of Black Box Testing and White Box Testing. International Journal of Computer Sciences and Engineering, 5(12), 301–304. https://doi.org/10.26438/ijcse/v5i12.301304
- Walz, M., & Guenther, E. (2021). What effects does material flow cost accounting have for companies?: Evidence from a case studies analysis. Journal of Industrial Ecology, 25(3), 593–613. https://doi.org/10.1111/jiec.13064
- Wang, T., Hu, B., Chang, S., & Ding, L. (2018). Inventory inaccuracies and radio frequency identification technology: Risk analysis and coordination. Computers and Industrial Engineering, 125, 9–22. https://doi.org/10.1016/j.cie.2018.08.003
- Yeung, S., Rinaldo, F., Jopling, J., Liu, B., Mehra, R., Downing, N. L., Guo, M., Bianconi, G. M., Alahi, A., Lee, J., Campbell, B., Deru, K., Beninati, W., Fei-Fei, L., & Milstein, A. (2019). A computer vision system for deep learning-based detection of patient mobilization activities in the ICU. Npj Digital Medicine, 2(1). https://doi.org/10.1038/s41746-019-0087-z
- Yuan, J., Zhang, L., & Kim, C. S. (2023). Multimodal Interaction of MU Plant Landscape Design in Marine Urban Based on Computer Vision Technology. Plants, 12(7). https://doi.org/10.3390/plants12071431
- Zhang, M., Fan, J., Sharma, A., & Kukkar, A. (2022). Data mining applications in university information management system development. Journal of Intelligent Systems, 31(1), 207–220. https://doi.org/10.1515/jisys-2022-0006
References
Alam, M. F., Katsikas, S., Beltramello, O., & Hadjiefthymiades, S. (2017). Augmented and virtual reality-based monitoring and safety system: A prototype IoT platform. Journal of Network and Computer Applications, 89, 109–119. https://doi.org/10.1016/j.jnca.2017.03.022
Almeida, F. (n.d.). European Journal of Education: Strategies for Conducting a Mixed Methods Study. https://doi.org/10.5281/zenodo.1406214
Astuti, E. R. (2022). Improvement Quality of Software Requirements Using Requirement Negotiation System for Supporting Decision (Vol. 10, Issue 1).
Barlow, S. E., O’Neill, M. A., & Pavlik, B. M. (2019). A prototype RFID tag for detecting bumblebee visitations within fragmented landscapes. Journal of Biological Engineering, 13(1). https://doi.org/10.1186/s13036-019-0143-x
Bit, J., Tarigan, M., Kom, M., & Handayani, D. (2019). Prototype Pengembangan Sistem Pencatatan Stok Barang Dengan Teknologi RFID (Vol. 16, Issue 2). https://journal.budiluhur.ac.id/index.php/bit
Chan, C. C., Abu Bakar, N. H., Raju, C. M., & Urban, P. L. (2024). Computer Vision-Assisted Robotized Sampling of Volatile Organic Compounds. Analytical Chemistry, 96(41), 16307–16314. https://doi.org/10.1021/acs.analchem.4c03361
Cui, L., Zhang, Z., Gao, N., Meng, Z., & Li, Z. (2019). Radio frequency identification and sensing techniques and their applications—A review of the state-of-the-art. In Sensors (Switzerland) (Vol. 19, Issue 18). MDPI AG. https://doi.org/10.3390/s19184012
Ekanayake, B., Wong, J. K. W., Fini, A. A. F., & Smith, P. (2021). Computer vision-based interior construction progress monitoring: A literature review and future research directions. In Automation in Construction (Vol. 127). Elsevier B.V. https://doi.org/10.1016/j.autcon.2021.103705
Ekanem, I. I., Ohwoekevwo, J. U., & Ikpe, A. E. (2024). Conjectures of computer vision technology (CVT) on industrial information management systems (IMSs): a futuristic gaze. In Metaheuristic algorithms with applications (Vol. 1, Issue 1). http://creativecommons.org/licenses/by/4.0
Gortschacher, L. J., & Grosinger, J. (2019). UHF RFID Sensor System Using Tag Signal Patterns: A Prototype System. IEEE Antennas and Wireless Propagation Letters, 18(10), 2209–2213. https://doi.org/10.1109/LAWP.2019.2940336
Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., & Pedreschi, D. (2019). A survey of methods for explaining black box models. ACM Computing Surveys, 51(5). https://doi.org/10.1145/3236009
Ismail, H., & Hanafiah, M. M. (2021). Evaluation of e-waste management systems in Malaysia using life cycle assessment and material flow analysis. Journal of Cleaner Production, 308. https://doi.org/10.1016/j.jclepro.2021.127358
Kumar, M., Professor, A., Kumar Singh, S., Dwivedi, R. K., & Professor, A. (2015). International Journal of Advance Research in Computer Science and Management Studies. International Journal of Advance Research in Computer Science and Management Studies, 3(10). www.ijarcsms.com
Loyola-Gonzalez, O. (2019). Black-box vs. White-Box: Understanding their advantages and weaknesses from a practical point of view. In IEEE Access (Vol. 7, pp. 154096–154113). Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/ACCESS.2019.2949286
Markic, D. N., Carapina, H. S., Bjelic, D., Bjelic, L. S., Ilic, P., Pesic, Z. S., & Kikanovicz, O. (2019). Using material flow analysis for waste management planning. Polish Journal of Environmental Studies, 28(1), 255–265. https://doi.org/10.15244/pjoes/78621
Nidhra, S. (2012). Black Box and White Box Testing Techniques - A Literature Review. International Journal of Embedded Systems and Applications, 2(2), 29–50. https://doi.org/10.5121/ijesa.2012.2204
Oktaviani, L., Fernando, Y., Romadhoni, R., & Noviana, N. (2021). Developing a web-based application for school councelling and guidance during COVID-19 Pandemic. Journal of Community Service and Empowerment, 2(3), 110–117. https://doi.org/10.22219/jcse.v2i3.17630
Pirdaus, D. I., & Hidayana, R. A. (2024). Analysis Testing Black Box and White Box on Application To-Do List Based Web. International Journal of Mathematics, Statistics, and Computing, 2(2), 68–75.
Schandl, H., Fischer-Kowalski, M., West, J., Giljum, S., Dittrich, M., Eisenmenger, N., Geschke, A., Lieber, M., Wieland, H., Schaffartzik, A., Krausmann, F., Gierlinger, S., Hosking, K., Lenzen, M., Tanikawa, H., Miatto, A., & Fishman, T. (2018). Global material flows and resource productivity forty years of evidence. Journal of Industrial Ecology, 22(4), 827–838. https://doi.org/10.1111/jiec.12626
Selvaraj, A. S., & Anusha, S. (2021). RFID enabled smart data analysis in a smart warehouse monitoring system using iot. Journal of Physics: Conference Series, 1717(1). https://doi.org/10.1088/1742-6596/1717/1/012022
Sjödin, D. R., Parida, V., Leksell, M., & Petrovic, A. (2018). Smart Factory Implementation and Process Innovation: A Preliminary Maturity Model for Leveraging Digitalization in ManufacturingMoving to smart factories presents specific challenges that can be addressed through a structured approach focused on people, processes, and technologies. Research Technology Management, 61(5), 22–31. https://doi.org/10.1080/08956308.2018.1471277
Taherdoost, H. (2022). What are Different Research Approaches? Comprehensive Review of Qualitative, Quantitative, and Mixed Method Research, Their Applications, Types, and Limitations. Journal of Management Science & Engineering Research, 2022(1), 53–63. https://doi.org/10.30564/jmser.v5i1.4538ï
Tian, H., Wang, T., Liu, Y., Qiao, X., & Li, Y. (2020). Computer vision technology in agricultural automation —A review. In Information Processing in Agriculture (Vol. 7, Issue 1, pp. 1–19). China Agricultural University. https://doi.org/10.1016/j.inpa.2019.09.006
Triki-Lahiani, A., Bennani-Ben Abdelghani, A., & Slama-Belkhodja, I. (2018). Fault detection and monitoring systems for photovoltaic installations: A review. In Renewable and Sustainable Energy Reviews (Vol. 82, pp. 2680–2692). Elsevier Ltd. https://doi.org/10.1016/j.rser.2017.09.101
Ullo, S. L., & Sinha, G. R. (2020). Advances in smart environment monitoring systems using iot and sensors. In Sensors (Switzerland) (Vol. 20, Issue 11). MDPI AG. https://doi.org/10.3390/s20113113
Veena, S., Vinoth, N. A. S., Nancy, A. M., Kumar, G. S., & Teja, R. T. (2020). Effective system for software requirement management. AIP Conference Proceedings, 2277. https://doi.org/10.1063/5.0025463
Verma, A., Khatana, A., & Chaudhary, S. (2017). A Comparative Study of Black Box Testing and White Box Testing. International Journal of Computer Sciences and Engineering, 5(12), 301–304. https://doi.org/10.26438/ijcse/v5i12.301304
Walz, M., & Guenther, E. (2021). What effects does material flow cost accounting have for companies?: Evidence from a case studies analysis. Journal of Industrial Ecology, 25(3), 593–613. https://doi.org/10.1111/jiec.13064
Wang, T., Hu, B., Chang, S., & Ding, L. (2018). Inventory inaccuracies and radio frequency identification technology: Risk analysis and coordination. Computers and Industrial Engineering, 125, 9–22. https://doi.org/10.1016/j.cie.2018.08.003
Yeung, S., Rinaldo, F., Jopling, J., Liu, B., Mehra, R., Downing, N. L., Guo, M., Bianconi, G. M., Alahi, A., Lee, J., Campbell, B., Deru, K., Beninati, W., Fei-Fei, L., & Milstein, A. (2019). A computer vision system for deep learning-based detection of patient mobilization activities in the ICU. Npj Digital Medicine, 2(1). https://doi.org/10.1038/s41746-019-0087-z
Yuan, J., Zhang, L., & Kim, C. S. (2023). Multimodal Interaction of MU Plant Landscape Design in Marine Urban Based on Computer Vision Technology. Plants, 12(7). https://doi.org/10.3390/plants12071431
Zhang, M., Fan, J., Sharma, A., & Kukkar, A. (2022). Data mining applications in university information management system development. Journal of Intelligent Systems, 31(1), 207–220. https://doi.org/10.1515/jisys-2022-0006